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We consider the effects of slowly varying depth and current on the evolution of a 
packet of Stokes waves. The lengthscale of one-dimensional depth variation is 
assumed to be much greater than that of the wave envelope, and the direction of the 
current is perpendicular to the depth contours. By the method of multiple scales, the 
wave envelope is found to satisfy a cubic Schrodinger equation with slowly varying 
coefficients The criterion of spatial instability to small sidebands is extended. 
Numerical integration shows that the nonlinear evolution of a wavepacket is directly 
related to the instability parameter, which depends strongly on the current and depth 
variation. The heuristic hypothesis of Djordjevic & Redekopp on the soliton 
evolution over a slope in the absence of current is assessed. 

1. Introduction 
The evolution of weakly nonlinear surface waves on non-uniform depth is 

important to the understanding of coastal wave climate. For very long waves in 
shallow water, numerical integration of Boussinesq equations has revealed that a 
soliton from deeper water is first distorted while climbing the slope, and then forced 
to emit several solitons along the shelf of smaller but constant depth (Madsen & Mei 
1969). Approximations for very gentle slopes have led to a simpler Korteweg-de Vries 
(KdV) equation with variable coefficients. By suitable approximation over the slope 
and the use of the exact solution by inverse-scattering theory to subsequent events 
on the shelf, soliton fission has been analytically confirmed (for other related papers 
see Tappert & Zabusky 1971 ; Johnson 1973; Ono 1974; Miles 1980). 

It is well known that the evolution of a long envelope of short surface waves is 
also characterized by the competition between nonlinearity and dispersion. In deep 
water or finite but constant depth, a wavepacket can emit bound solitons which do 
not separate but interact to exhibit recurrence. These interesting features can be 
inferred from the exact solution of Zakharov & Shabat (1972) and have been 
ellucidated by Satsuma & Yajima (1974) and Yuen & Lake (1980), who surveyed both 
theories and experiments. The effects of variable depth have been studied by 
Djordjevic & Redekopp (1978), who deduced a cubic Schrodinger equation with 
variable coefficients for bottom slopes that are much less than the slope of the 
envelope. They predict that a soliton envelope can undergo fission only if it  
propagates into deeper water. By heuristic assumptions for the evolution along the 
slope, they also estimate the number of solitons emitted after a single soliton descends 
from a shallower shelf. 

In this paper we extend the study of Djordjevic & Redekopp by incorporating the 
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FIQURE 1:Geometry of the problem. 

effect of a current whose presence is known to be important to infinitesimal waves. 
The current is allowed to be as strong as the phase velocity of the waves, and varies 
in space in accordance with the changing depth. A cubic Schrodinger equation is also 
found for the wave envelope; the coefficients in the equation now depend on the 
current. We first show that the shoaling of an infinite train of Stokes waves obey the 
same formula as the infinitesimal waves, this fact corresponds to the known result 
that a shoaling solitary wave obeys Green’s law. We then show that the instability 
criterion of Benjamin & Feir (1967) for uniform depth can be extended to the shoaling 
Stokes waves on slowly varying depth and current. Results of a numerical study are 
then discussed. For pure depth variation without current, our results confirm 
Djordjevic & Redekopp in that fission is possible only if a soliton propagates into 
a region of greater depth; but their hypothesis on the events along the slope is not 
quantitatively supported. While a subcritical current along the wave gives only 
qualitative changes, a supercritical current increases the water depth upon entering 
shallow water, and is found to cause greater instability. The nonlinear consequence 
is that soliton fission can occur if a wave packet propagates into a shallower sea. For 
a subcritical current opposing the waves, Stokes waves can be unstable and soliton 
fission is possible in all depths as long as waves are not stopped. 

2. Outline of derivation of the evolution equation 

and of the medium as follows: 
We introduce the small parameter e to characterize the slope of the short waves 

where w ,  k and a are the characteristic frequency, wavenumber and wave amplitude 
of the short waves, and h and U are the still-water depth and current velocity 
respectively. The depth is only a function of x, and U is in the x-direction (see figure 
1) .  It is further assumed that 

kh = O(l ) ,  (2.2) 

U(gh)b S O(1). (2.3) 

Thus the current can be strong. For convenience we shall say that U = O( 1 )  without 
formal normalization. 
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In the absence of waves and vorticity (a, 5 O(e4)) ,  the current velocity U and the 
associated free-surface displacement l; satisfy Airy’s nonlinear equations for shallow 
water waves 

a 
at ax 
3 + - [ ~ ( 5 + h ) ]  = 0 ( € 4 ) ,  (2.4) 

au au al; 
- + u- 3-9- = 0 ( ~ 4 ) ,  
at ax ax 

P = pg(5-z)+0(e4).  (2.6) 

Terms on the left of (2.4) and (2.5) are O(e2)  because of the assumed time- and 
lengthscales. It can be shown that the local horizontal velocity of the current is 
independent of the vertical coordinate z with an error of O(e4). From the exact 
equation of continuity, the vertical current velocity is O(e2) : 

To study the effect of currents on waves, we substitute 

*total = (U+U,  w) ,  [total = C + T ~  Ptotal = P+P (2.8) 

into the full Euler equations and the boundary conditions. By assumption, u, w, p 
and rj are O(e) ,  and derivatives operating on them are of order unity. We then obtain 
from continuity and momentum conservation a combined equation for wave pressure 
P :  { (;;)2 awau auau} 

v 2 p = - p  2 - +2--+4-- +O(e4) ( - h <  z < Y + r ) .  (2.9) 
ax a Z  ax ax 

From the condition that there is no velocity normal to the sea bottom, we obtain 

(2.10) 

The kinematic condition on the free surface can be expanded about z = 5, with the 
result 

a7 ac a7 au aw a7 arau q w w  
- +u- + U- = -7- + ~ + 7 -  -u- -7-- + -? +0(€4) ( z  = 6)  at ax ax ax a Z  ax axaz 2 aZ 

(2.11) 

The dynamic condition that DplDt = 0 on z = [+s can be expanded similarly to 
yield 

ap a Z p  72 a p  ap a2P - +r/- + -- + u- + u?/- 
at ataz 2 a t a z 2  ax a2 ax 

7 2  a3p ap apau 3% +u- + q - -  +uq- 
ax a Z  

+ u-- 
2 w a x  ax ax a Z  
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Next we make explicit use of the slow coordinates 

X = 6'2, T = E 2 t ,  (2.13 a) 

so that U = U ( X ,  T) and [ = [ ( X ,  T ) ,  and introduce the moving coordinate 

(2.13 b)  

We shall restrict our attention to waves that propagate in the positive x-direction. 
The following WKB expansions are then introduced : 

where 

o o n  
p ( x ,  z,  t )  = Z enPnrneirn4, 

n-1rnn-n 

( 2 . 1 4 ~ )  

(2.14b) 

(2.15a) 

(2.15 b )  

( 2 . 1 5 ~ )  

and ( )* denotes the complex conjugate of ( ). 
Expansions for u and w are similar to (2.14b). The perturbation procedure is 

lengthy but straightforward, and is in principle, similar to that used by Chu & Mei 
(1970), Davey & Stewartson (1974) and Djordjevic & Redekopp (1978). Details are 
omitted, but may be found in Turpin (1981), with corrections by Benmoussa (1982). 
In  particular, the first-order first-harmonic amplitude of wave pressure is 

cosh k(z  + h) 
PI, = A 

cosh kd ' 
(2.16) 

where d = c + h  (2.17) 

denotes the mean water depth including the current set-up. The following dispersion 
relation holds : 

u2 = ( w -  Uk)z = gk tanh kd,  (2.18) 

the properties of which are well known (see e.g. Peregrine 1976). Let 

U c = -  
k '  

denote the phase and group velocities respectively, and 

/3 = tanh Ed 

(2.19) 

(2.20) 

set 

(2.21) 

for brevity. Then A is governed by the following cubic Schrodinger equation : 

1 
a1 A + - A ,  + A ,  + i a 2  A ,  + ia, (AI2 A = 0, (2.22) 

Cg 
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where the cocficicrits are 

(T a (".g), 
1 arr 

x , ( X ,  T) = - -- + __- - 
~ U C , ~ T  2 c , a x  

a 2 ( X ,  T) = - (Cg- "I2[ 1 - (c,- gd u)2 (1 --/32) (1 -/?ha)] 
2 d ,  c; 

5 

( 2 . 2 3 ~ )  

(2.236) 

2py c, - U)2 
gd-(C,- U)2 

T) = 

(1 -/32)2]]. ( 2 . 2 3 ~ )  
(C, - w2 

In the special case of vanishing current, (2.22) and (2.23) reduce to those of 
Djordjevic & Redekopp for variable depth. Indeed the formal effect of a strong 
current is simply to change h to d and w to (T, with the associated changes in C, and 
C,. For constant depth the result of Davey & Stewartson (1974) is recovered. 

The stipulation that the current is not affected by short waves holds as long as 
h = h(s2x) and the length- and timescales of the current outside the wavepacket are 
O(s-l) larger than those of the wave envelope for any current strength within the 
range 0 < U(gh)d < O(1). Although our starting assumption was at  the upper limit 
that U(gh)-i = 0(1), the result was already seen to hold for the lower limit of U = 0. 
Consider an intermediate magnitude, say U(gh)-t = O(s). We can then allow zeroth 
harmonics ul0, vlo and plo at the first order in the perturbation analysis. They are, 
however, found to depend only on X and T and not on the lengthscale of the wave- 
packet. Moreover, they are governed by the linearized version of (2.4) and (2.5) and 
initial and boundary conditions for upstream. Therefore the case of an O(s)  current 
is merely a special case of strong current. If, on the other hand, h = h(sx),  the current 
and wavepacket have comparable length-scales. We then expect the current to be 
affected by the short waves, since it is well known in constant depth that even a 
second-order O(s2) current is affected by wave modulation (Benney & Roskes 1969; 
Chu & Mei (1970; Davey & Stewartson 1974). 

Once U and 5 are known from Airy's equations, A can be solved in principle for 
suitable initial and boundary conditions. 

In practice the solution for transient Airy's equations is an involved task in itself; 
we shall therefore limit our subsequent discussion to a steady current. 

For later purposes we introduce the following normalized 

( U ,  c;, qJ = ( U ,  c,, C,) (gh,)-t, 

A 
A' = -, k' = kh1, 

variables : 

(2.24) 

wave period T = - 2n($y, J 
w 
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FIGURE 2. Specific-head diagram. 

where a and h, represent respectively the wave amplitude and a reference depth. 
We shall henceforth omit the primes for brevity. 

Equations (2 .22)  preserves its form after the normalization except that a;, a: and 
aj (with primes omitted) are obtained from (2.23a, b ,  c )  by simply omitting g and p. 

With the help of the transformation (Djordjevic & Redekopp 1978) 

X x =  a,(u)du, (2.25) 

A = B exp (- Jfal(u) du) = S B ,  (2.26) 

(2 .22)  can be put in the canonical form 

- i B,-+ B, + KIBI2B = 0, (2.27) 

( 2 . 2 8 ~ )  

(2.283) 

with the subscript 1 denoting values at X = x = 0. The quantity s depends only on 
X or x and is known to be the shoaling factor of infinitesimal waves. 

3. Properties of a stationary current on a slowly varying depth 
For a stationary current with a/aT = 0, existing knowledge in open-channel 

hydraulics can be applied. Some of the salient features are summarized below. After 
integrating Airy’s equation with respect to X, we obtain 
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FIGURE 3. Critical depth. 
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FIGURE 4. Set-up due to the current. 

where U, and h, refer to the constant values at X+- 00. Defining the speci$c head 

by 

we can eliminate U to get 

which is plotted in figure 2 .  The smallest H,  occurs at 

(3.4) 
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FIGURE 5. Stopping periods for negative currents. 

below which there can be no stationary current. The corresponding specific head, 
still-water depth and Froude number are respectively 

(3.6a, b, c )  

These values define the critical pow. Figure 3 shows the variation of hc/hl 2rs. the 
Froude number F, = U,(gh,)+. Thus a steady current is possible if h > h, everywhere 
or Fl > 32. From (3.1) and (3.2) a cubic equation can be derived for d = c + h :  

Typical solutions are plotted in figure 4, which shows that d/hl decreases or increases 
as h/h, increases, for F, > 1 (supercritical flow) or F, < 1 (subcritical flow) respectively. 
For the critical flow F,  = 1 ; two total depths are possible for the same h/h,. 

4. Analytical aspects of waves 
4.1. Dispersion relation 

As is well known (see e.g. Peregrine 1976), a positive current (in the positive x-direction 
along which the waves are assumed to propagate) tends to lengthen the waves while 
a negative current shortens them. Corresponding to a given depth and negative 
current there is a certain period at  which a sinusoidal wavetrain cannot propagate. 
For later reference the stopping periods are plotted in figure 5 against h/h, for various 
values of Fl. 
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4.2. Shoaling of an  infinite train of Stokes waves 

If the initial and boundary conditions are such that a Stokes wavetrain is unmodulated 
on the physical length- and timescales O(ke)-l  and O(we)-' respectively, then A 
depends on X only, but not on 6. In view of (2.26), B is a function of x only, and 
(2.27) may be easily integrated: 

where B(0) can be taken to be real. Thus nonlinearity affects the phase of B(X') only. 
Combining (2.26) with (4.1), we obtain 

A = sB(0) exp ( - i B2(0) 3 s 2  dv) ,  JOX% 
which is the result for Stokes waves on a variable medium. Note that 

where A(0)  = B(0).  Thus the first-order first-harmonic amplitude of a Stokes wave 
varies with x according to the shoaling law of infinitesimal waves. 

4.3. Sideband instability 

Existing theories on the sideband instability are all for constant depth, so that the 
coefficients of the Schrodinger equation are constants. Here the coefficient (a3/a2) s2 
depends only on x, and the spatial instability can still be examined in the standard 
manner. 

Letting B ( X ,  6) = b ( x ,  <)eif(x,c), (4.4) 

where b and f are both real, then 

with w = fc.  

Linearizing with respect to the Stokes wave b = b, and W = 0, i.e. 

b = b, + b', W = w', (4.6) 

and assuming a slowly varying perturbation in the form of a propagating wave : 

we find the eigenvalue condition 

- dfi = Qb, (& - K)' 
dX 

If K > 0, dfi/dx can be imaginary, and the sideband disturbance grows spatially in 
x, and hence is unstable. K will be referred to as the instability parameter. 

Since the sign dependence of u3 on kd is the same as in the case of constant depth 
(cf. Davey & Stewartson 1974) and since a2 > 0 always, the shoaling Stokes 
wavetrain is unstable if kd > 1.363, where kd now depends on the current. 
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5. Numerical procedure for solving the evolution equation 
After the current and its mean sea level were calculated, a semi-implicit finite- 

difference scheme of Crank-Nicolison type was applied to (2.22) directly to solve for 
A .  Only wavepackets were considered so that JAl.10 as lEl+ 00. The boundary 
conditions in the computational schemes are that A = 0 at E = -&, where 6, was 
chosen large enough (and different in different cases) so that further increase in [ did 
not change the result. The conservation law 

5 JAI2 dt = const. 
CT -a3 

holds and was used to check the global accuracy. Satisfactory confirmation was first 
obtained for a permanent soliton on a constant depth. 

The botton geometry examined was a smooth slope connecting two different but 
constant depths : h = 1 ,  X < 0; h = 1 + dh, X > 0. The transition was specified to be 

h =  l+&i?h(l-cOs~X) (0 < X <  l ) ,  (5.2) 

and the parameter dh was varied. The initial envelope was taken to be 

(5.3) 

When a3(0) > 0, this represents a soliton, which propagates over constant depth 
( h  = 1)  without any shape variation. The required spatial domain on the [-axis 
depended on (a3(0)l/2a,(O))-4 and was made sufficiently large throughout the 
integration. 

We first discuss the results of pure depth variation without current. A t  the start 
of the slope X = 0, the Froude number F, a t  X-t- 00 and the normalized short wave 
period 7 were prescribed. 

6. Evolution of a wave packet on a varying depth 
In figure 6 we plot the inverse of the shoaling coefficient (Cg/c)/(Cg/~), = 5,, the 

dispersion relation and the instability parameter K = s2a3/a2 as functions of local 
depth h/h, ,  with the dimensionless wave period 7 as the parameter. A shorter period 
implies a larger kd, 5 and K .  For all frequencies, the zeros of K occur at kd = 1.363; 
the corresponding h/h ,  increases with shorter period. 

We experimented with various cases where an initial wavepacket travelled in the 
direction of increasing or decreasing K ,  in regions where K was either positive, or 
negative, or changed sign. 

(i) K > 0 for all X. In figure 7 computed results are shown for 7 = 5 for dh = 0.3 
(i.e. h, = 1, h, = 1.3). A t  the beginning and the end of the slope we have 

( k d ) ,  = (kh) ,  = 1.69, 

( k d ) ,  = (kh) ,  = 2.11, 

(K), = 1.4 

(K) ,  = 2.18 

(X = 0), 

(X = 1). 

Thus the initial envelope, which was a soliton, propagated in the direction of 
increasing instability ( K f ) .  A t  X = 1 the envelope was no longer a soliton; and has 
two side groups separated by nodes. The qualitative evolution picture in figure 7 (a)  
is similar to the case of two bound solitons, where there is a single recurrence period 
after which the profile repeats itself. However, in this case, recurrence is accompanied 
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FIGURE 7. (a) 3-dimensional plot of the wave amplitude ( A ( X ,  [)I; ( b )  wave amplitude ( A ( X ,  ()I and 
(c) phase Arg ( A ( X ,  6)) for X = 0, 1, 1.6; Fl = 0, 7 = 5, dh = +0.3, K ,  = 1.4, (kh) ,  = 1.69, 
K ,  = 2.18, = 2.11, m = 1.5, A = -26.6%, global energy error = 2.5%. 
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FIGURE 8. (a )  3-dimensional plot of the wave amplitude ( A ( X ,  [)I; ( b )  wave amplitude IA(X, [)I and 
(c) phase Arg ( A ( X ,  6)) for X = 0, 1, 4; Fl = 0, T = 5, dh = -0.15, K ,  = 1.4, (kh) ,  = 1.69, K ,  = 0.72, 
(kh),  = 1.49, m = 1.3, A = 10.8y0, global energy error = 0.1 Yo. 
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by a slow decay of the maximum amplitude and a slight spreading towards large 6,  
signalling radiation. Note in particular that the envelope at  the start of the shelf 
(X = 1)  already has two nodes and is quite different from a sech profile: 

5 
h 

A = Asech -. 

Note also from figure 7(c) the sharp jump of phase by n across the envelope node, 
implying a peak of wave frequency or wavenumber. Because of the limited range of 
z computed, one cannot determine accurately the ultimate number of solitons on 
the shelf. For reference we note that for an initial envelope of the form (6.1), the 
asymptotic state consists of N solitons plus decaying oscillations, where N is the 
largest integer less than 

m = (-EL)': -+- ,  1 
2% 2 

where d = XAA is the total area of the initial envelope and a3/a2 is the initial 
instability parameter on the constant depth (Satsuma & Yajima, 1975). If 
(a3/2a2)id/n = N = integer, there are precisely N bound solitons. From further 
numerical experiments by Yue (1980) and ourselves, we know that, if 1 < m < 1.5, 
there is a dispersive decay but no quasirecurrence. If 1.5 < m < 2.5, recurrences 
typical of two bound solitons appear in addition; however only one soliton survives 
at the end if 1.5 < m < 2, and two if 2 < m < 2.5. For two initial envelopes of the 
same area and height, the evolution toward the final state can be quite different 
quantitatively if their shapes and phase distributions are different. The effect of phase 
has been examined by Benmoussa (1983), but no new qualitative features have been 
found. 

By calculating numerically the area 

at  the station X = 1, we may use (6.2) as a rough guide for the asymptotic state. 
For figure 7, m = 1.5, so that there should be only one soliton at X - t  00. The fact 
that we see both recurrence and radiation is due to the initial departure from (6.1). 

Keeping all the parameters fixed except dh, several numerical experiments showed 
that the position of the first envelope node, the internodal distance arid the maximum 
amplitude were strongly dependent on the magnitude of dh. The larger the depth 
variation, the shorter is the distance of recurrence and the larger is the maximum 
amplitude. 

Figure 8 shows an example where the envelope propagated toward decreasing depth 
( K 4 )  although K > 0 (unstable) throughout. The envelope tended to flatten, but 
the heuristic estimation according to (6.2) and (6.3) indicates that it evolved into one 
soliton since m = 1.3. This has been further confirmed by comparing with the 
calculated evolution of another envelope which began at X = 1 with the same area 
and height but the form of (6.1). The two envelopes are nearly the same at  X = 4. 
Therefore a soliton packet propagating into shallower water may achieve on the shelf 
a new balance between dispersion and nonlinearity although there is no fission. If 
the shallow water depth is such that K,  tends to zero (for T = 5 this happens if 
h/h,+0.75 - see figure 6c) then the initial soliton envelope will just flatten steadily. 

(ii) K < 0 for all X. No soliton can exist in this case, and the initial packet flattens 
whether the depth increases or decreases in the direction of propagation. Plots are 
omitted. 
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FIGURE 9. (a) 3-dimensional plot of the wave amplitude IA(X, 5)1; ( b )  wave amplitude 1A(X, 5)1 and 
(c) phase Arg ( A ( X ,  5)) for X = 0, 1, 6.4; 4 = 0, 7 = 6, dh  = +0.3, Kl = -0.54, (kh),  = 1.28, 
K8 = 0.73, (kh),  = 1.56, m = 1.7, global energy error = 0.05%. 
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(iii) K changes sign. Figure 9 shows the case of K increasing from -0.54 to  0.73 
(kd from 1.28 to 1.56). The initial packet was not a soliton at X = 0, but soliton 
emission is clear in the deeper water (m = 1.7).  If K decreases from positive to 
negative values, an initial soliton flattens and is not plotted here. 

The emission of new solitons from a single soliton travelling into deeper water was 
first predicted by Djordjevic & Redekopp. Their estimation was based on (6.2) with 
an additional hypothesis on the envelope profile at X = 1.  In terms of B defined by 
(2.26) and (2.27) they assumed that the initial soliton 

(6.4) B = B, sech vt, 
with v = B,(+K):, (6.5) 

preserved its form even after crossing the slope to X = 1. This of course implies that 
the wavepacket evolves in the same way as an infinite wavetrain, i.e. that the 
dependence on 6 is negligible. This assumption is not supported by the numerical 
results here as indicated in figures 7 (b) ,  8 ( b )  and 9 (b)  by the changes in shape and 
in dimensions of A from X = 0 to X = 1, despite the fact that the shoaling factor 
changed very little from X = 0 to X = 1. Since the estimation of the number of 
solitons emitted asymptotically depends on the area d of the envelope at X = 1 ,  we 
compared this area calculated from our numerical result with that implied by 

The ratio A = 1 - d,/d is then a measure of discrepancy. Our numerical experiments 
showed that A 5 0 when dh >( 0 in general, and A = - 26.6 yo for figure 7 ,  A = + 10.8 yo 
for figure 8. These discrepancies are sufficiently large to affect the number of soliton 
emission; hence the heuristic assumption of Djordjevic & Redekopp is not always 
reliable. 

7. Effects of a steady current on changing depth on the evolution of a wave- 
packet 

The important parameters kd,  K and s now depend on Fl = U,(gh,)-$, i.e. the 
Froude number a t  X+- 00. 

7.1.  Positive subcritical current (Fl = 0.5) 
Figure 10 gives for various wave periods 7 the inverse of the shoaling coefficient, the 
dispersion relation, and the instability parameter K,  as functions of local depth of 
the still water. All results are given for h greater than the critical depth h,. For the 
case shown, B!, = 0.5; the critical depth is h,/h, = 0.38, as can be read from figure 
3. Comparing with the case of zero current, we first note the reduction of kd for the 
same h/h,, implying the lengthening of waves by the positive current. As h increases, 
s now increases, since U decreases and C, decreases also in greater depth. The 
lengthening of waves also shifts the curves of the instability parameter towards deeper 
water. Thus wave periods must be smaller in order for K to be positive at  a given 
h/h,. For the same topography as in the case without current (cf. figure 7 ,  we note 
from figure 1O(c) that K < 0 for 0 < h < 1.3 if the same period 7 = 5 is assumed, and 
no solitons can exist with this current. However, for lower periods this positive 
subcritical current gives results qualitatively similar to those without current : soliton 
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FIGURE 12. (a) Inverse of the shoaling coefficient tP; ( b )  wavenumber kd; (c) instability 
parameter K ,  for a supercritical current Fl = 2. 
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emission is possible if the depth and the instability parameter increase in the direction 
of propagation. Figure 11 gives such an example for 7 = 3 and dh = 0.3. For this case 
m = 1.9, so that asymptotically only one soliton evolves. Djordjevic & Redekopp’s 
assumption about shape conservation of the initial soliton along the slope can be 
extended without modification to the case with current, and would give m, = 2.1, 
i.e. two solitons instead of one. It should be noted that this difference is important 
only asymptotically for large X; for a limited X the physical pictures are largely the 
same. 

7 2. Positive supercritical current 

In contrast with the previous cases, a positive supercritical current gives rise to 
smaller kd or longer waves as h/h, increases. The shoaling factor s also decreases from 
shallow to deep water. More important, the instability parameter K decreases with 
increasing h/h,  (see figure 12). Thus Stokes waves are unstable in shallow water but 
stable in deep water! Figure 13 shows a case where the depth decreases from 1 to 
0.7, but K is positive everywhere and increasing. The wave envelope envolves into 
two solitons (m = 2.1) plus some oscillation, which radiates for large X. 

7.3. Negative subcritical current 

We have selected a weak opposing current 4 = 0.1 so that for the range of period 
computed the stopping depths implied by figure 5 were just slightly higher than the 
critical depth for the existence of the steady current. The left ends of all curves in 
Figure 14 correspond to the stopping depths at which C, = 0. Most noteworthy is 
the fact that kd and K have a minimum around h/h,  = 0.6 near the stopping depth; 
this is because the local wavenumber is large. Moreover, for sufficiently short waves 
(7 < 6.1 here) kd > 1.363 and K > 0 for all h/h,  greater than the stopping depth. 
Thus all Stokes waves are unstable! The envelope for dh = 0.3, 7 = 6, where kd 
increases from 1.58 to 1.83, again show near-recurrence. The figure is, however, 
omitted. 

If the negative current is supercritical, no waves can exist. We omit all results for 
waves travelling into a region of decreasing instability. Suffice it to say that an initial 
soliton always flattens. 

8. Concluding remarks 
In summary, the evolution of the wavepacket is determined by the instability 

parameter K .  Whatever the sign of K before the slope, a sufficiently large wavepacket 
tends to form one or more solitons if K increases to a positive value after the slope, 
and tends to flatten if K < 0 after the slope. If K is positive throughout but decreasing 
in the direction of wave propagation then an initial soliton flattens and disperses. The 
value of K depends on h/h,  and 7 = (2n/w) (g/h,)i  and on the current. Without 
current, K increases with h/h,,  but decreases with r ,  being zero at kh = 1.36. 
A steady current exists when h > he, where h, is the critical depth, at which R, = 1. 

If the flow is positive and subcritical (0 < Fl < l), then K increases with increasing 
h/h,  but decreases with increasing 7. However, if the flow is positive and supercritical 
(F, > l), then K decreases with increasing h/h,  and 7 .  Finally, if the flow opposes 
the wave and is subcritical ( -  1 > F > 0) ,  then K decreases with increasing 7 but 
is not monotonic in h/h,,  having a minimum for some h/h,.  This presents the 
possibility for soliton fission whether the waves enter the deeper or shallower water. 
In all cases K = 0 when k(h+g)  = 1.36. 
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For a strong current over a long distance, bottom friction is important in nature 
and should be incorporated in future work. 
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